La Taberna del Puerto

La Taberna del Puerto (https://foro.latabernadelpuerto.com/index.php)
-   Títulos Náutico-deportivos (https://foro.latabernadelpuerto.com/forumdisplay.php?f=46)
-   -   CY Examen Cálculos Madrid Diciembre 2007 1er día (https://foro.latabernadelpuerto.com/showthread.php?t=16344)

Mascocó 28-03-2008 21:33

CY Examen Cálculos Madrid Diciembre 2007 1er día
 
Examen de Cálculos Madrid Diciembre 2007 1er día.

El día 6 de abril de 2007 al ser la hora de paso del sol por el meridiano, observamos simultánamente altura instrumental meridiana del sol limbo inferior 78º 09’, y demora verdadera de Faro Lero 020º. Situación del faro: l = 18º 18’ N; L = 033º 30’ W.

Una vez situados, ponemos rumbo para situarnos en el punto “P” de latitud 18º-30’,4 N y longitud 033-04’,8 W, sabiendo que existe una corriente de dirección 125º e intensidad horaria 2,5 millas. Velocidad de máquina de nuestro buque 10 nudos.

Después de navegar a distintos rumbos y velocidades, al ser la hora del crepúsculo náutico vespertino, en situación de estima l = 19º N, L = 033º W, observamos simultáneamente altura instrumental de la estrella Polar 19º 16’,3’ y altura instrumental de un astro desconocido 58º 45’, azimut verdadero de dicho astro 098º.

Elevación del observador 12 metros. Corrección de índice 3’(+).

Se pide:
1. Situación a mediodía por meridiana del Sol y faro de Lero.
2. Rumbo efectivo y verdadero para llegar a P. Velocidad efectiva y hora (TU y legal) de llegada a P.
3. Situación al crepúsculo por Polar y desconocido.

Soluciones (MasBarco):
1. l=18º05,4’N L=033º34,8’W
2. Re=48,7º Rv=34,7º Ve=10,3 nudos TU=17h57,6m HRB=15h57,6m
3. l=19º03,8’N L=33º4,7’W






Por supuesto se admiten, y agradecerán, correcciones, anotaciones, comentarios etc…

Saludos :brindis:

Mascocó 28-03-2008 21:37

Re: CY Examen Cálculos Madrid Diciembre 2007 1er día
 
Apartado 1. Situación a mediodía por meridiana del Sol y faro de Lero.

Según la página diaria para día 6 de abril de 2007 la hora TUpmg=12h2,5m, esta es la hora de paso del Sol por el meridiano de Greenwich, también será la hora civil de paso del Sol por el meridiano del lugar (de longitud Le) Hcl, luego el TU de la observación será: TUpml=TUpmg-Le/15=12h2,5m+33,5/15
TU=14h16,5m

Interpolando los datos del almanaque para TU=14h y TU=15h, obtenemos para la declinación del Sol en la Se:
d=6º27,0’N.

Al dato de altura instrumental ai le aplicamos las correcciones: Ei=+3 Dp(12m)=-6.2 R(78º09’)=+15,8 Cadic.(6 Abril)=+0,0’
Con lo que la altura verdadera medida será: av=78º09’+3’-6,2’+15,8’
av==78º21,6’

Al ser el momento de la observación el del paso del astro por el meridiano calculamos la latitud lo según: lo=d+Ca (culminación mirando al sur, con Ca=90-av)
Luego lo=6º27,0’+90-78º21,6’
lo=18º05,4’N

Dibujamos nuestra situación respecto al faro de Lero:

http://latabernadelpuerto.es/portal/...culos_pb21.jpg


Fig.11


Calculamos el incremento de latitud ∆l y la latitud media lm:
le=18º18’N lo=18º05,4’N
∆l=le-lo=12,6’
lm=(le+lo)/2=18º11,7’=18,195

A=∆lxtg(Rv)=12,6xtg(20)=4,586
∆L=A/cos(lm)= 4,586/cos(18,195)=4,8’W

Lo=Le+∆L=-33º30’-4,8’
Lo=033º34,8’W


:brindis:

Mascocó 28-03-2008 21:41

Re: CY Examen Cálculos Madrid Diciembre 2007 1er día
 
Apartado 2. Rumbo efectivo y verdadero para llegar a P. Velocidad efectiva y hora (TU y legal) de llegada a P.

Punto So; lo=18º05,4’N Lo=033º34,8’W
Punto P ; lp=18º30,4’N Lp=033º04,8’W

http://latabernadelpuerto.es/portal/...culos_pb22.jpg


Fig.21


El cálculo del rumbo efectivo lo resolvemos por estima inversa.

Calculamos el incremento de latitud y longitud (∆l e ∆L) y la latitud media lm: ∆l=lp-lo=25’ ∆L=Lp-lo=30’ lm=(lo+lp)/2=18,298

Con estos datos el apartamiento de longitud A: A=∆Lxcos(lm)=30xcos(18,298)=28,483

Y con esto el rumbo efectivo Re según:
tg(Re)=A/∆l=28,483/25
Re=48,7º

D=∆l/cos(Re)=25/cos(48,7)
D=37,9 Millas

Ahora tenemos que tener en cuenta la corriente para el cálculo del rumbo a seguir y el tiempo empleado.

Dibujamos los dos vectores, velocidad efectiva y corriente:
Ve/Re=Ve/48.7º e Ic/Rc=2,5/125º

como del vector Ve sólo conocemos su dirección y sentido trazaremos su directriz según Re, a falta de averiguar su módulo, la velocidad efectiva.

http://latabernadelpuerto.es/portal/...culos_pb23.jpg

Fig.22


Podemos resolver el problema gráficamente sin más que trazar desde el extremo del vector corriente un arco de radio la velocidad del buque (Vb=10 nudos) que corte a la directriz del rumbo efectivo, con esto tendremos definidos completamente los vectores Vb y Ve y podemos medir sobre el papel los valores Rb y Ve, resultando:
Vb=10/34,7º y Ve=10,3/48,7º.
Es decir, Rb, rumbo verdadero del buque Rv=34,7º
velocidad efectiva Ve=10,3 nudos

Otra manera de resolver el problema es analíticamente que, aunque más complicada en cálculos, nos evita dibujar exactamente los vectores, bastando con un croquis a mano alzada.

Para ello utilizaremos el teorema de los senos:
a/sen(A)=b/sen(B)=c/sen(C)
siendo a,A etc… los lados y ángulos opuestos del triángulo.

Calculamos el ángulo en el origen O=Rc-Re=125-48,7=76,3º

Aplicamos el teorema de los senos:
10/sen(76,3)=2,5/sen(P), de donde P=14º y el rumbo a seguir por el buque:
Rb=48,7-P=34,7-14
Rb=34,7º

Calculamos el ángulo C según O+P+C=180, C=180-76,3-14=89,7º
10/sen(76,3)=Ve/sen(89,7), de donde
Ve=10,3 nudos

Una vez conocida la velocidad efectiva Ve=10,3 nudos ya podemos calcular el tiempo empleado en recorrer la distancia D=37,9 Millas para llegar al punto P: t=D/Ve=37,9/10,3
t=3h41m

Cálculo de la hora (TU y legal) de llegada a P.
Con la longitud de observación Lo=033º34,8’W recalculamos la hora TU de salida hacia P:
TUo=TUpml=TUpmg+Lo/15=12h2,5m-33,58/15
TUo=14h16,8m

Y ahora la hora TU de llegada a P:
TUp=TUo+t=14h16,8m+3h41m
TUp=17h57,6m

Para la longitud Lp, z=-2, luego la hora legal de llegada a P será:
HRBp=TUp-2
HRBp=15h57,6m


:brindis:

Mascocó 28-03-2008 21:43

Re: CY Examen Cálculos Madrid Diciembre 2007 1er día
 
Apartado 3. Situación al crepúsculo por Polar y desconocido.

Altura por la Polar

Tenemos como situación de estima previa le=19ºN Le=033ºW

Calculamos la hora en TU del crepúsculo náutico vespertino en Greenwich, igual a la hora civil del lugar de observación, para le=19ºN, interpolando los datos del almanaque para 10ºN y 20ºN:
TUcnvG=Hcl=19h3,2m con lo que el TU de la observación será:
TUcnvL=Hcl-Le/15=19h3,2m+33/15
TU=21h15,2m

Para este TU tomamos del almanaque, para TU=21h, el horario en Greenwich de Aries, y la corrección para 15,2m:
hGy=149º46,1’+3º48,6’
hGy =153º34,7’

el horario en el lugar de Le=33ºW de Aries será:
hLy=hGy+Le=153º34,7’-33º
hLy=120º34,7’

Con esto calculamos las correcciones a aplicar a la altura de la Polar. Según las tablas del almanaque:
C=C1+C2+C3=-7’+0,1’+0,4’=-6,5’

Corregimos la altura instrumental ai:
Ei=+3 Dp(12m)=-6.2 R(19º16,3’)=-2,8
av=19º16,3’+3’-6,2’-2,8’
av=19º10,3’N

lo=av+C=19º10,3’-6,5’
lo=19º03,8’N


:brindis:

Mascocó 28-03-2008 21:52

Re: CY Examen Cálculos Madrid Diciembre 2007 1er día
 
Apartado 3. Situación al crepúsculo por Polar y desconocido.

Astro desconocido

Corregimos la ai, av=58º45’+3-6,2-0,6’
av=58º41,2’

Para identificar el astro desconocido hacemos un primer cálculo del determinante para calcular la declinación d y ángulo sídéreo As aproximados del astro, partiendo de la latitud de observación lo, altura medida al astro av y su azimut estimado Z . Dibujamos el triángulo esférico con Ca=90-av=90-58º41,2’=31,3º, colatitud Cl=90-lo=71º y Z=098º

http://latabernadelpuerto.es/portal/...culos_pb24.jpg

Fig.31


Calculamos la codeclinación según:
cos(Cd)=cos(71)cos(31,3)+sen(71)sen(31,3)cos(98)
Cd=77,9 y d=90-Cd=90-77,9
d=12,1º

Y el ángulo en el polo P según:
cos(31,3)= cos(71)cos(77,9)+sen(71)sen(77,9)cos(P)
P=31,7º

ahora el ángulo sidéreo As según:
As-(L-P)+hGaries=360 As=360+33-31,7-153º34,7’
As=207º43,3’

Con los datos d=12,1º y As=207º43,3’ encontramos Regulus en el almanaque.


:brindis:

Mascocó 28-03-2008 22:01

Re: CY Examen Cálculos Madrid Diciembre 2007 1er día
 
Apartado 3. Situación al crepúsculo por Polar y desconocido.

Cálculo de la recta de altura de Regulus y longitud de observación

Tomamos del almanaque los datos de Regulus:
d=11º55,9’
As=207º48,3’

Para calcular su recta de altura volvemos a plantear el determinante con estos datos.

Con el As calculamos el ángulo en el polo:
P=360+33-153º34,7’-207º48,3’=31,617º

Cd=90-d=90-11º55,9’=78,068º
Cl=90-lo=70,937

http://latabernadelpuerto.es/portal/...culos_pb25.jpg

Fig.32


Recalculamos Ca y Z

cos(Ca)=cos(70,937)cos(78,068)+sen(70,937)sen(78,0 68)cos(31,617)
Ca=31,239
ae=90-Ca=90-31,239=58º45,6’
∆a=av-ae=58º41,2’-58º45,6’
∆a=-4,4’

cos(Z)=(cos(78,038)-cos(70,937)cos(31,239))/(sen(70,937)sen(31,239))
Z=98,5º

Damos por buena la latitud ya calculada con la altura de la Polar y con los datos obtenidos de ∆a y Z dibujamos la recta de altura de Regulus para corregir la longitud según su corte con la latitud ya conocida.

Al ser el ∆a negativo la recta de altura se traza en sentido opuesto.

Calculando el ∆L gráficamente con la ayuda de la escala para el paralelo de lo=19º:


http://latabernadelpuerto.es/portal/...culos_pb27.jpg


Fig.33


Medimos en el dibujo ∆L:
∆L =4,7’W
luego Lo=Le+∆L=-33º-4,7’
Lo=33º4,7’W

Igualmente podríamos resolverlo por estima:

http://latabernadelpuerto.es/portal/...culos_pb26.jpg


Fig.34


A=∆a/cos(Z-90)=4,4/cos(8,5)=4,45’
∆L=A/cos(lo)=4,45/cos(19)
∆L =4,7’W
Lo=Le+∆L=-33º-4,7’
Lo=33º4,7’W


Saludos y :brindis:

Polizón 28-03-2008 23:20

Re: CY Examen Cálculos Madrid Diciembre 2007 1er día
 
Perdon, me confundí de hilo.

Polizón 30-03-2008 13:02

Re: CY Examen Cálculos Madrid Diciembre 2007 1er día
 
Hola, tenía hecho este problema y lo he buscado, me sale clavado, tan sólo una pequeña diferencia de 19 segundos en la hora de llegada al punto P, porque no corregí la hora de la meridiana con la nueva longitud observada al mediodía.
Saludos y gracias por tu trabajo.

antonio 01-04-2008 14:19

Re: CY Examen Cálculos Madrid Diciembre 2007 1er día
 
Perdona la pregunta tonta.

En el cálculo de la latitud por altura meridiana ¿como sabemos que es cara al Sur y no al Norte?

(por supuesto aparte de deducirlo del resultado si la tomamos mirando al Norte y la latitud sale Sur cuando la situación de estima esara latitud Norte).-

Saludos.

Mascocó 01-04-2008 17:42

Re: CY Examen Cálculos Madrid Diciembre 2007 1er día
 
Cita:

Originalmente publicado por antonio (Mensaje 239367)
Perdona la pregunta tonta.

En el cálculo de la latitud por altura meridiana ¿como sabemos que es cara al Sur y no al Norte?

(por supuesto aparte de deducirlo del resultado si la tomamos mirando al Norte y la latitud sale Sur cuando la situación de estima esara latitud Norte).-

Saludos.

le= 18º 18’N
d=6º27,0’N

Al ser la declinación del astro menor que nuestra latitud estamos al norte del astro luego lo vemos mirando hacia el sur.

De todas formas, como bien dices, si la tomas al norte sería:
lo=d-(90-av)=6º27,0’-90-78º21,6'=-5º11,4'
lo=5º11,4'S (que es un claro error)

Saludos :brindis:

antonio 03-04-2008 12:32

Re: CY Examen Cálculos Madrid Diciembre 2007 1er día
 
Hola MasBarco:

Voy por libre para CY en Barna. El próximo 18-04-08.
He seguido el desarrollo de tu problema anterior y me sale en el determinante de altura de Arcturus una Dif. De altura de + 4,1’ y atí te sale -4,4’.

Me suele ocurrir este tipo de atascos con frecuencia, por lo que pierdo el problema, como me pasó en la anterior convocatoria.

En cuanto a la altura verdadera, me sale como a ti.

Pero en la altura estimada a mí me sale 58º 37’ y a ti 58º45,6’.

Yo he utilizado la fórmula Sen a = sen dec x sen lat + cos dec x cos tal x cos hl* .

(declinación 11º55’9’) (latitud 19º3,5’) (hl* = 31’77º. A ti te sale 31’617º)

El error que cometo como queda dicho es de más de 8’, lo que me perece demasiado para esa pequeña diferencia en el hl* o Ángulo en el Polo.

Esta fórmula con su criterio de signos los he sacado del libro del MAPA “Astronomía y Navegación” de D. Fausto Castelló Mora.

Repito, me atasco con cierta frecuencia en la diferencia de altura.

Saludos desde Alicante.

antonio 03-04-2008 12:50

Re: CY Examen Cálculos Madrid Diciembre 2007 1er día
 
Perdona MasBarco:

¿Qué criterio de signos sigues en la fórmula que utilizas en tu desarrollo?



En la fórmula del del libro del MAPA:

A +........ si lat y dec = signo
A - .........si lat y dec signo distinto.


B + ........si P < 90º
B - ........ si P > 90º



Saludos.

Mascocó 03-04-2008 14:47

Re: CY Examen Cálculos Madrid Diciembre 2007 1er día
 
Cita:

Originalmente publicado por antonio (Mensaje 240676)
Hola MasBarco:

Voy por libre para CY en Barna. El próximo 18-04-08.
He seguido el desarrollo de tu problema anterior y me sale en el determinante de altura de Arcturus una Dif. De altura de + 4,1’ y atí te sale -4,4’.

Me suele ocurrir este tipo de atascos con frecuencia, por lo que pierdo el problema, como me pasó en la anterior convocatoria.

En cuanto a la altura verdadera, me sale como a ti.

Pero en la altura estimada a mí me sale 58º 37’ y a ti 58º45,6’.

Yo he utilizado la fórmula Sen a = sen dec x sen lat + cos dec x cos tal x cos hl* .

(declinación 11º55’9’) (latitud 19º3,5’) (hl* = 31’77º. A ti te sale 31’617º)

El error que cometo como queda dicho es de más de 8’, lo que me perece demasiado para esa pequeña diferencia en el hl* o Ángulo en el Polo.

Esta fórmula con su criterio de signos los he sacado del libro del MAPA “Astronomía y Navegación” de D. Fausto Castelló Mora.

Repito, me atasco con cierta frecuencia en la diferencia de altura.

Saludos desde Alicante.

Usando tu fórmula:
sen(a)=sen(d)sen(l)+cos(d)cos(l)cos(P)

y tus datos:
d=11º55,9'
l=19º3,5'
P=31,77º

efectivamente sale:
a=58º37'
∆a=av-ae=58º41,2’-58º37'
∆a=+4,2’
Z=98,4º


con los datos míos:
d=11º55,9'
l=19º3,8'
P=31,617º

sale:
a=58º45,6'
∆a=av-ae=58º41,2’-58º45,6’
∆a=-4,4’
Z=98,5º

es decir el mismo resultado que a mí. El problema es que has tomado otra situación de estima, tanto en latitud como en longitud, ésta define el hGy y el ángulo en el polo, con lo cual es lógico que dé otro resultado para corregirla.

Yo he tomado como latitud la calculada por la Polar. Y el ángulo en el polo es, si no me equivoco, el que yo calculo por:
P=360-L-As-hGy=360+33-207º48,3’-153º34,7’=31º37'=31,617º

Saludos :brindis:

PD. Yo también lo estoy preparando por libre y también me confundo un montón, o sea que para el examen no lo tengo tan claro.

Mascocó 03-04-2008 15:04

Re: CY Examen Cálculos Madrid Diciembre 2007 1er día
 
Cita:

Originalmente publicado por antonio (Mensaje 240686)
Perdona MasBarco:

¿Qué criterio de signos sigues en la fórmula que utilizas en tu desarrollo?



En la fórmula del del libro del MAPA:

A +........ si lat y dec = signo
A - .........si lat y dec signo distinto.


B + ........si P < 90º
B - ........ si P > 90º



Saludos.

La verdad sea dicha que no te sigo con lo de A+, B-... Yo me pinto los horarios para ver, con el ángulo en el polo, si el astro queda al E o W del punto de observación, o sea si el azimut que calcule es E o W. La resolución de la fórmula con la calculadora me da el azimut Z de 0 a 180º, que será E o W según lo anterior, si el signo de la diferencia de alturas es negativo le sumo 180º antes de dibujar la recta de altura.

No sé si me explico.

Saludos :brindis:

Mascocó 03-04-2008 15:08

Re: CY Examen Cálculos Madrid Diciembre 2007 1er día
 
Por cierto Polizón, esta fórmula que pone Antonio:
sen(a)=sen(d)sen(l)+cos(d)cos(l)cos(P)

¿es a la que tú te referías para calcular directamente la altura estimada entrando con la latitud y declinación?.

:brindis:

Polizón 03-04-2008 17:09

Re: CY Examen Cálculos Madrid Diciembre 2007 1er día
 
Cita:

Originalmente publicado por MasBarco (Mensaje 240771)
Por cierto Polizón, esta fórmula que pone Antonio:
sen(a)=sen(d)sen(l)+cos(d)cos(l)cos(P)

¿es a la que tú te referías para calcular directamente la altura estimada entrando con la latitud y declinación?.

:brindis:

Hola MasBarco, si, esa es la fórmula que te comenté, con ella obtenemos directamente la altura estimada, sin utilizar ningún complemento, con lo que simplificamos algo el cálculo.
Yo tampoco entiendo lo que le sucede a Antonio.
Saludos.

antonio 03-04-2008 20:48

Re: CY Examen Cálculos Madrid Diciembre 2007 1er día
 
Perdonad que sea reiterativo.

La fórmula que utilizo me da bien a veces y otras unas diferencias de alturas exageradas.

En el caso que nos ocupa entre -4 y +4, el error alcanza los 8 minutos.

Como veis arrastro un error de alguna décima en la latidud por la Polar y en el hl*, pero estas décimas creo que no deberían ser el origen de un error tan abultado.

En el examen de diciembre de Barcelona al que me presenté, en una de las R.A. me salía una diferencia de altura de unas 25 millas. Claramente cometí un error que no pude detectar aunque lo repasé varias veces.

En resumen, lo que trato es de detectar dónde cometo el error.

En cuanto a la fórmula del seno (al lío del A y B) , sólo se trata de descomponer la fórmula en dos miembros. Sumamos el A al B, pero tanto A como B pueden ser de signo negativo o positivo. Cuando lo practicas en muy fácil y rápido, pero como ya he dicho, de vez en cuando me llevo algunas sorpresas al ver que me salen demasiados minutos de más o de menos a pesar de que los datos de latitud, declinación y hl* utilizados son los adecuados.

Saludos desde Alicante.


Todas las horas son GMT +1. La hora es 12:48.

Powered by vBulletin® Version 3.7.0
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
© La Taberna del Puerto