Datos para el Swan 411, haciendo unas cuantas cábalas:
http://www.classicswan.org/swan_411.php
INPUT
Hull length (m) = 12,44
Waterline length (m) =
10,23
Maximum beam (m) =
3,64
Floatation beam (m) =
3,28 (asumed)
Total draught (m) =
2,08
Body draught (m) =
0,69
Moulded depth (m) =
1,75
Freeboard (m) =
1,06
Displacement (kg) =
10.800
Ballast (kg) =
4.900
IJPE area (m2) =
81,17
Air draft (m) =
18,66
Heeling arm (m) =
7,69
Engine power (HP) =
36,99
I (m) = 17,53
J (m) = 5,49
P (m) = 15,7
E (m) = 4,21
Height keel (approx.) = 1,39
Length keel (approx.) = 2,03
OUTPUT (with some assumptions)
Block coeffcient = 0,46
Prismatic coefficient = 0,56
Waterplane coefficient = 0,7
Main section coefficient = 0,81
(2Lwl+Lh)/3Bmax Ratio = 3,01
Lwl/Bwl Ratio = 3,12
Length/Draught Ratio = 5,98
Beam/Draught Ratio = 1,75
Beam waterline/Body draught = 4,75
Ballast/Displacement Ratio = 0,45
Displacement/Length Ratio = 281
Sail Area/Disp. Ratio = 16,88
Sail Area/Wetted surface = 2,46
SA (metric)/ Power (Imp.) = 2,19
Power/ Disp. Ratio (HP/Ton) = 1,55
Hull speed (kn) = 7,76
Potential Maximum Speed (kn) = 8,36
Velocity Ratio = 1,08
Efficient motoring speed (kn) = 6,37
Capsize Safety Factor = 1,66
Motion Comfort Ratio = 37,6
Heft Ratio = 1,28
Moment of Inertia (kg*m2) = 51026,25
Roll Period (sec) = 4,29
Roll Acceleration (G's) = 0,05
Stability Index = 1,18
Angle of Vanishing Stability (º) = 126
Upright Heeling Moment (kg*m) = 3165,19
Righting Moment at 1º (kg*m) = 90,69
Heeling Moment at 20º (kg*m) = 2690,47
Righting Moment at 20º(kg*m) = 1627,69
Dellenbaugh Angle (º) 14kn wind = 34,90
Wind pressure coefficient = 0,60
Initial Metacentric height (m) = 0,48
Asumed angle of vanishing stability (º) =
126
Asumed downflooding angle (º) =
110
GZ at downflooding angle (m) =
0,14
GZ at 90 degrees (m) =
0,33
Area to downflooding (m*deg) =
59,09
Area to AVS (m*deg) =
60,21
STIX (to input displacement) = 41
(esto es una deducción conservadora del STIX, que posiblemente sea bastante mayor. Me haría falta tener la curva de GZ real)