![]() |
|
|
|
| VHF: Canal 77 |    | ![]() |
![]() |
![]() |
![]() |
![]() |
|
|
|
#1
|
||||
|
||||
|
En este problema nos dan el horario local del astro. El horario local es arco de ecuador celeste que va desde el meridiano superior del observador hasta el meridiano del astro (circulo horario) medido hacia el W, independientemente de en que hemisferio estemos. El hL que nos dan es de 333º 28.2', mayor de 180º por tanto está al Este. Por lo tanto el azimut es de 31º 8.6'
![]() |
|
#2
|
||||
|
||||
|
Cita:
![]() ![]() ![]() el razonamiento es correcto, pero el azimut que me sale es 28.9º o si se quiere N28.9ºE. El valor que has puesto de 31º8.6' es el dato de la altura del astro, y es un dato del problema. Yo lo he calculado y me sale eso que decia arriba: 28.9º = N28.9ºE, que es uno de los dos valores que le sale al cofrade y que abrio el hilo planteando la duda. Los valores de calculo que me salen son: TRIANGULO DE POSICION GENERICO ABC (ó abc) grados decimales Angulo en el Polo (P) = Â =Â -26,530000 º Codeclinacion del astro (D) =b 112,031667 º Colatitud estimada del observador (Clest) =c 58,960000 º cos (a) 0,517183 Distancia cenital (ca) =a 58,856548 º Altura estimada del astro en el lugar (aest) 31 º 08,6 31,143452 º Distancia cenital (ca) =a 58,856548 º Codeclinacion del astro (D) =b 112,031667 º Colatitud estimada del observador (Clest) =c 58,960000 º cos (^B) -0,875194 Azimut estimado del astro en el lugar (^Zest) =^B Respecto al N 28,932114 º Azimut NAUTICO: se mide respecto al N 028 º 55,9 28,9 º Azimut cuadrantal 028 º 55,9 N-E 28,9 º N-E |
|
#3
|
||||
|
||||
|
muchas gracias a todos:
realmente lo que me estaba volviendo un poco loco, era la igualdad de resultados que resultaba al usar uno u otro triangulo (del PN o del PS), el razonamiento lógico me decía que al resolver el triangulo del PS el angulo obtenido forzosamente debería de ser el suplementario del Azimut, pero sorprendentemente era el mismo que si resolviese el triangulo del PN. El cofrade ignaciob me abrió la luz cuando comento el tema de la ambigüedad de los senos. ya que sen 151= sen 29. Y gracias a eso pude ver que dependiendo de como sean los datos, creo que en la mayoría de los casos, si se emplea la ley de los cosenos y el segundo teorema de Bessel de los senos, puede dar lugar a error a causa de esa ambigüedad. por ello he resuelto que quizá s mucho mas seguro construir el triangulo de posición en base al PN para evitar ese tipo de problemas y luego determinar el signo de dicho angulo en base a si esta al W o al E de la posición. Nota: he tomado este método por dos motivos principalmente, uno es que mi calculadora no tiene cotag, por lo que para los cálculos tenia que tirar de equivalencias trigonométricas cotag a = cos a / sen a. y dos de esta forma solo tengo que memorizar la formula del coseno, prescindiendo de la de la cotag. Un saludo y gracias a tod@s |
|
#4
|
||||
|
||||
|
Cita:
Aparte de la errata, lo que queria decir es que para resolver problemas de navegación astronómica solo es necesario tener claros los conceptos, hacer si acaso algún dibujo simple y sabiendo la fórmula de los cosenos del triángulo esférico es más que suficiente. ![]() |
![]() |
Ver todos los foros en uno |
| Herramientas | |
| Estilo | |
|
|