![]() |
|
|
|
| VHF: Canal 77 |    | ![]() |
![]() |
![]() |
![]() |
![]() |
|
#27
|
||||
|
||||
|
Lo primero que debería hacer U25 es empezar por el principio,
que es la estabilidad estática con un par de diagramas con centro de gravedad, centro de carena y altura metácéntrica, uno por el plano transversal y otro por el plano de crujía. Ahí tenemos el corte transversal y curvas de ejemplos para distintos tipos de casco o artefacto flotante. ![]() Con las curvas de la estabilidad estática podemos luego empezar a hablar de estabilidad dinámica. Los que han estudiado CY saben que se toma el integral de la diferencia entre momento adrizante M_adr y momento escorante M_esc: Integral_0^theta (M_adr(x) - M_esc(x)) dx Una vez que tenemos esos conceptos en mente, podemos empezar a desarrollar más sobre la estabilidad dinámica y esclarer con diagramas vectoriales las fuerzas y momentos que intervienen en las distintas situaciones (ej. bajada de ola). Cito de http://www.johnsboatstuff.com/Articles/dynamic.htm porque lo explica con mucha claridad: Static Stability is familiar to most of us because it largely determines the angle of heel (roll) developed by a sailboat under constant wind conditions. Some of the roll can be reduced by changing the center of gravity (hiking out or moving ballast), reducing sail area, or running off slightly (avoid the wind). Under light to moderate conditions, the ideal cruising boat should carry enough sail to perform well and have enough static stability to avoid excessive heel. The most important factors that increase static stability are heavy displacement, low center of gravity, and a center of buoyancy that shifts outboard quickly when the boat heels (strongly related to beam). Most cruising monohulls exhibit positive static stability out to heel angles of 130 degrees, with the highest righting moment occurring around 65 degrees. Multihulls peak higher and sooner than monohulls and capsize at lower angles. Dynamic Stability controls how much the boat rolls in response to a transient wind gust or violent wave. The ideal cruising boat should resist these dynamic forces long enough for them to pass safely by. Reducing sail area will usually help reduce dynamic roll, and the boat can often be steered around the worst waves, but our ideal cruiser should have enough dynamic stability "built in" to survive an encounter with a strong gust or rogue wave without capsizing. If the worst does happen, and our ideal boat gets rolled 180 degrees, it should right itself quickly. Heavy displacement helps dynamic stability, but the center of gravity is not much of a player and a large beam actually makes the response worse (beamy boats catch the wave early and give it more leverage and time to act on the hull). Once inverted, the increased static stability associated with beam becomes a liability since it keeps the boat inverted for a longer period of time. Light and beamy boats often have high Capsize Risk (see definitions). The most important factor in dynamic stability, however, is the boat’s roll moment of inertia. Without getting into much math, the roll moment of inertia is proportional to the square of the transverse distance between the boat and its center of gravity. The squared term makes the calculation very sensitive to how far heavy objects are from the center of gravity. For example, a dingy with two people sitting fore and aft on the centerline has a smaller roll moment of inertia than the same dingy with the people sitting side by side. Both boats weight the same, have the same center of gravity, and the same center of buoyancy (same static stability), but moving the people off the centerline greatly increases the roll moment of inertia. Since the roll moment of inertia is proportional to the square of the distance from the center of gravity, deep ballast and long heavy masts have the most impact. A large roll moment of inertia is desirable for a cruising boat because it increases the total time and energy required to capsize the vessel. Boats with large moments of inertia have long roll periods and are highly resistant to rapid changes. Multihulls have a very large roll moment of inertia because the hulls are quite far from the center line. Static or Dynamic Stability. Which is best? Can we have both? The trade off between static and dynamic stability forces us into a compromise situation where there is no single correct answer. Heavier boats have more static and dynamic stability, but less performance. Wide beam boats have high static stability, but they also have a higher capsize risk and more inverted stability. Wide beam is generally associated with lighter weight, higher performance boats, which will have a short roll period and low roll moment of inertia. High performance boats also typically have smaller section masts and less rigging. This reduces the weight aloft and increases static stability, but greatly reduces the moment of inertia. A heavy cruising boat with a deep bulb keel, heavy spars, lots of rigging, and a radar mounted above the spreaders will have a large roll moment of inertia, a long roll period, and be very resistant to wind gusts and waves. The best we can do is to make our evaluations based on our expected use. A coastal cruiser, for example, may except the dynamic stability penalties associated with wide beam. A blue water cruiser probably won’t. Similarly, carbon fiber spars may increase static stability (good for light air performance) but they will greatly reduce the roll moment of inertia (see example). While static stability will always be a critical sailboat parameter, the dynamic characteristics of a cruising boat should be understood since they can be very important under storm conditions. ![]() ![]()
__________________
__/)____________ ______(\________ Editado por ivanlc en 21-07-2011 a las 10:55. |
| Los siguientes cofrades agradecieron este mensaje a ivanlc | ||
quiron (27-07-2011) | ||
|
|