![]() |
|
|
|
| VHF: Canal 77 |    | ![]() |
![]() |
![]() |
![]() |
![]() |
|
|
|
#1
|
||||
|
||||
|
Cita:
sobre tu dibujo con todos los ángulos a 90 grados (según el enunciado) y verás que no es posible. ![]() |
|
#2
|
||||
|
||||
|
Vaya se ha animado el hilo. Me alegro.
De todas formas una cuestión: yo nunca he dicho que volviese hacia el Norte, sino que gira exactamente 90º en cada uno de los dos giros. Con esa condición solo se da el PN o el PS, al decir sale hacia el Sur, era una pista para descartar el PS, pero me temo que os ha "cegado" y en los giros habeis ido hacia el Norte, por lo que deducis que se puede dar en otro punto de la esfera, pero con giros exactos de 90º solo se da en los casquetes de los Polos. Birras para todos, si os anima os puedo poner otro tambien curioso |
|
#3
|
||||
|
||||
|
Yo tengo una duda, a ver si consigo explicarme.
En todo momento se está haciendo referencia a virar 90º a la derecha, pero lo que se quiere decir si no estoy equivocado es, empezando en un punto hacer 20' a un rumbo 180º, luego virar al rumbo 270º otras 20', y finalmente realizar otras 20' a un rumbo 360º 0 000º, no? Pero en el planteamiento del problema no se habla de rumbos, ni de aguja, ni verdaderos, ni de superficie, ni efectivos, simplemente se dice que viras 90º a la derecha en cada cambio de dirección, y ahí es donde queria llegar. Si nos olvidamos del compás, y salimos de un punto determinado que en este caso es el l 90º 00' N L no se sabe o no importa o no existe, y realizamos 20' a rumbo Sur 180º pero al momento de realizar el cambio de rumbo, lo seguimos al pie de la letra del planteamiento, cogemos una escuadra de 90º exactos, y viramos 90º exactos a la derecha, estaremos trazando un rumbo 270º ??, teniendo en cuenta la cercania del Polo Norte de solo 20', y si una vez realizadas estas 20' en linea recta volvemos a realizar la misma operación, y viramos 90º a la derecha, y reitero lo de olvidandonos del compás, tranzando un cambio de rumbo de 90º geométricos, estais seguros de que volvemos al punto de partida??? TROPELIO DONDE ESTAS?????? ![]()
__________________
No se trata de ver algo que nadie haya visto jamás, se trata de ver algo nuevo y diferente en lo que todo el mundo ve. Editado por madrugon en 11-04-2008 a las 15:52. |
|
#4
|
||||
|
||||
|
Cita:
Es curioso que en este hilo ocurre justo al contrario de lo que he observado en clase de navegación, en clase, las personas se centran en rumbos, derivas, abatimientos, etc. y no llegan a ver que estamos resolviendo triángulos "de los de toda la vida", solo que con nombres diferentes en sus definiciones, pero triángulos al fin y al cabo. ![]() ![]() ![]() para todos |
|
#5
|
||||
|
||||
|
Solo para centrar alguna de las cosas de este hilo, más que nada para que no queden las cosas, en mi opinión, confusas y/o erradas.
También en mi opinión ya ha habido cofrades que han apuntado las cuestiones correctas, madrugón primero, luego Calixto y también beagle en su 2ª intervención y Calixto insiste de nuevo, y yo mismo (por no poner el burro delante), pero nadie parece hacernos mucho caso. (Y seguramente alguien escriba algo más mientras redacto esto). Así que he hecho un dibujo para explicarme mejor. ![]() En resumen, digo lo siguiente: 1.- Si vas hacia el NORTE desde el hemisferio sur y al llegar al Ecuador giras 90º a la derecha, irás hacia el ESTE. Lo que es lo mismo: 2.- Si vas hacia el SUR desde el hemisferio norte y al llegar al Ecuador giras 90º a la derecha, irás hacia el OESTE. Lo que es lo mismo: 3.- Si vas hacia el NORTE y al llegar al polo norte giras 90º a la derecha, irás hacia el SUR. Todo esto es porque todas las circunferencias implicadas en los caminos recorridos son de círculo máximo y perpendiculares entre sí. Pero… 4.- Si vas hacia el SUR desde el polo norte, punto P, y al llegar a un punto Q giras 90º a la derecha, NO irás hacia el OESTE. Estás de cara al punto R, por lo que, si sigues de frente llegarás hasta al punto R. Esto es porque la Tierra, según las últimas informaciones, NO es plana. Por tanto, después del giro seguirás por la circunferencia de círculo máximo (definida por QR) perpendicular a la que seguias antes del giro, que era la definida por PQ. Dicho de otra manera, más ‘náutica’, seguirás un rumbo ortodrómico en el que tu rumbo INICIAL es OESTE=270º. Ahora digo: Los puntos P, Q y R son los vértices de un triángulo esférico. Si los lados PQ y QR son iguales (en la figura 70º=4200 millas) y el ángulo PQ/QR es 90º, el lado QP NO es igual a los anteriores y los otros ángulos tampoco son 90º. Luego el planteamiento del problema del hilo es incorrecto. Únicamente en el caso de que cada tramo recorrido fuera de 5.400 millas=90º llegarías de nuevo al punto de partida, los tres ángulos serían de 90º y el triángulo esférico equilátero Si te empeñas en hacer la Tierra plana, con la ayuda de una carta Mercator por ejemplo, y giras 90º sobre la carta a la derecha, después del giro SI tendrás rumbo OESTE=270º, llegarás a un punto r, o a otro cualquiera del paralelo Qr y, si vuelves a girar 90º sobre la carta a la derecha. al final de recorrer una distancia igual a la primera PR, llegarás al punto de partida. Pero los puntos PQr NO definen un triángulo esférico (porque el lado Qr NO es arco de círculo máximo. La derrota es loxodrómica, que en sus tramos PQ y rP coincide con la ortodrómica. Respecto a algunas otras cosas que se han dicho a lo largo del hilo, voy a permitirme comentarlas en conjunto con una cita a mazarredo, como ‘culpable’ de iniciar el hilo y por favor ruego perdón a todos, pero el obligarme a pensar tanto tiene estas consecuencias. Cita:
La segunda parte el FALSO, en sus dos afirmaciones, primero porque los tres ángulos serán de 90º SOLO si los lados miden 90º=5.400 millas, segundo porque existen infinitos triángulos esféricos equiláteros sobre la Tierra con esta condición, y tercero porque cualquier recorrido por un triángulo esférico partiendo desde cualquier punto que tenga sus tres tramos iguales será equilátero y volverás al punto de partida… sólo que los ángulos de giro NO serán de 90º (con la excepción anterior). Ruego de nuevo mil perdones y gracias a mazarredo por el hilo que, a mi al menos, me ha obligado a pensar y me ha permitido aclarar unas cuantas ideas. Saludos |
|
#6
|
||||
|
||||
|
Cita:
Elogiable tu interés y trabajo en "visualizar" el problema que nos ocupa. Al elogiarte a tí me elogio a mí pues yo hago algo parecido. Tu explicación está muy trabajada, sin embargo hay algunas cosas que no acabo de comprender: Afirmas que: Si los lados PQ y QR son iguales (en la figura 70º=4200 millas) y el ángulo PQ/QR es 90º, el lado QP NO es igual a los anteriores y los otros ángulos tampoco son 90º. Eso no lo acabo de ver pues un lado mide lo mismo medido en sentido PQ que en sentido QP Tambien esto es confuso: Pero los puntos PQr NO definen un triángulo esférico (porque el lado Qr NO es arco de círculo máximo. La derrota es loxodrómica, que en sus tramos PQ y rP coincide con la ortodrómica. Yo creo que lo que no define ese triángulo esférico no son los tres puntos, precisamente, sino el lado QR, como dices bien, ya que no es un círculo máximo. Pero esos dos puntos unidos por un círculo máximo sí que determinarían un triángulo esférico aunque sin valores de los ángulos no se puede determinar si es equilátero o nó. Más o menos así: ![]() Clare está que este lado no constituye un rumbo loxodrómico. A efectos de navegación es más cómodo cortar por el paralelo pero ello supone una distancia mayor. En trigonometría esférica un triángulo esférico con uno, dos o tres ángulos rectos se denomina rectángulo, birrectángulo o trirrectángulo respectivamente. Un triángulo esférico en que uno, dos o tres lados son cuadrantes (cuarto de circunferencia máxima de la esfera) se denomina triángulo cuadrantal, bicuadrantal o tricuadrantal (también se llama "octante"), se deduce que un triángulo trirrectángulo es equilátero y además tricuadrantal, pero no es imperativo que un triángulo equilátero tenga que ser trirréctángulo o tricuadrantal. Ejemplos: Caso del triángulo equilátero trirrectángulo (que, por co**nes ha de ser tricuadrantal) Los valores de la longitud de los lados son muy aproximadas porque es muy difícil coincidir los valores de los ángulos en 90º, pero valen como ejemplo. Una esfera se puede dividir en 8 triángulos tricuadrantales. Caso del triángulo equilátero que no es rectángulo (repito lo del valor aproximado de los ángulos) Y caso de un triángulo equilátero ya mucho más pequeño: ![]() Podéis probar a hacer triángulos equiláteros sobre una esfera en: http://www.walter-fendt.de/m11s/sphertriangle_s.htm A ver cual es el valor de los ángulos del triángulo equílátero más pequeño que lográis hacer. Y, por supuesto estoy contigo en que: los tres ángulos serán de 90º SOLO si los lados miden 90º=5.400 millas, segundo porque existen infinitos triángulos esféricos equiláteros sobre la Tierra con esta condición, y tercero porque cualquier recorrido por un triángulo esférico partiendo desde cualquier punto que tenga sus tres tramos iguales será equilátero y volverás al punto de partida… sólo que los ángulos de giro NO serán de 90º (con la excepción anterior). Y a ver si os dedicais, todos en general, a navegar en lugar de tocar los h**vos al personal con cuestiones de este tipo, que tengo otras cosas en que pensar ![]() |
|
#7
|
||||
|
||||
|
Hola Yofloto, vaya, creí que ya habíamos acabado con esto, de hecho estaba pensando después de mi último post que me había pasado unos cuantos pueblos poniendo, o tratando de poner, los puntos sobre las íes sobre algo que se inició como un simple pasatiempo, por lo que me alegra ver que tú también sigues erre que erre.
Cita:
"... el lado RP NO es igual a los anteriores" me estaba refiriendo a que, siendo los dos primeros tramos iguales, y el primer giro de 90º, el tercer tramo (RP y no QP evidentemente) no va a ser igual a los anteriores, con lo que no llegarás al punto de partida (con la excepción de tramos de 90º etc...). Cita:
"... (porque el lado Qr, caminando por el paralelo, NO es arco de círculo máximo." Verdad es que por un punto pasan infinitas líneas, y por dos también, hasta paralelas entre sí, si aplicamos el teorema del punto gordo, que creo sigue de actualidad. En realidad lo que me chocó de este problema fué el ver exactamente la diferencia, que sabía que la había, entre, estando en una superficie esférica, "cambiar el rumbo 90º" y "girar 90º" y tengo que reconocer que me costó un rato el verlo como "hacia dónde te quedas mirando" para seguir caminando. Y como, en general os habías centrado en soluciones del tipo... "segundo tramo por un paralelo de perímetro 20 millas" etc..., no pude resistir la tentación de hacer mis propias acotaciones. Saludos cordiales PD. El tiempo está fatal para navegar, además desde el infierno lo tengo difícil, y encima acabo de examinarme de cálculos la semana pasada. |
![]() |
Ver todos los foros en uno |
| Herramientas | |
| Estilo | |
|
|
Discusiones similares
|
||||
| Discusión | Iniciada por | Foro | Respuestas | Último mensaje |
| para amantes de la geometría | soneya | Foro Náutico Deportivo | 21 | 15-03-2008 19:58 |
| Pérez-Reverte en "La carta esférica" | Vira-Concha | Foro Náutico Deportivo | 2 | 21-02-2008 18:58 |
| Problema con la palanca del wc | el_peri | Foro Náutico Deportivo | 3 | 01-02-2008 18:29 |
| La Carta Esférica: La peli | Al-Mahara | Foro Náutico Deportivo | 100 | 26-01-2008 11:09 |
| Problema con GARMIN GPS-12 | Tatatoa | Foro Náutico Deportivo | 4 | 01-07-2007 19:15 |